

WHITE PAPER

TIME MACHINE FRAMEWORK FOR ORACLE (TMFO) MULTITENANT DATABASES

TIME MACHINE FRAMEWORK FOR ORACLE (TMFO)

Time Machine Framework for Oracle (TMFO) is part of the Time Machine stack that provides more granularity of

time travel within an Oracle instance, so multiple different virtual clocks can co-exist. TMFO enables customers

to monitor all connections to an Oracle instance and to time travel specific connection with its own virtual clock

with the console. Customers can also define, enable or disable rules, so virtual clock will be automatically set

upon connection if the rule matches the filters on database user, host, or program.

TMFO has unique feature to time travel separate tenants including CDB and PDBs of a single Oracle instance

independently thus providing more flexibility and independence in QA testing of applications which use separate

tenant databases in a single QA Oracle instance. TMFO supports all Oracle Multi-Tenant architecture releases

from 12c up to 19c and up.

GRAPHIC 1

TM BENEFITS & KEY FEATURES:

 Enables multiple virtual clocks with the same Oracle instance

 Time travel by connection, program or database user within an Oracle instance

 Automate date and time sensitive testing by defining simple rules

 Intuitive and easy to use GUI

 Supports Linux, Windows, Solaris, AIX, HP-UX

 Supports all Oracle Multitenant Architecture releases from 12c and up

 Supports independent time travel of CDB and PDB tenants

 Support of cloud Oracle deployments in AWS, Oracle Cloud, etc

 Supports PL/SQL API for easy scripting

This white paper provides detailed information about how to install and configure TMFO for separate CDB and

PDB tenants in the latest Oracle19c release and time travel tenants to different virtual times.

TMFO REQUIREMENTS

Before installing TMFO in Oracle19c tenants, the following requirements must be satisfied:

 Time Machine (TM) must be installed on a host operating system before you can proceed to TMFO

installation. You must ensure that Time Machine is successfully activated with valid license codes

and the Time Machine service runs without any issues.

 Ensure that Time Machine installation directory is contained in PATH environment variable.

 The following TM versions are supported:

o AIX 64 bit - Time Machine version 10 or later

o HPUX Itanium - Time Machine version 10 or later

o Linux x64 - Time Machine version 11.1R9 or later

o Solaris SPARC - Time Machine version 10 or later

o Windows x64 - Time Machine version 11.1R12 or later

TMFO INSTALLATION IN ORACLE 19C TENANT DATABASES

TMFO installation in Oracle19c tenants includes three major steps:

 Install TMFO modules in the host where Oracle19c database is running

 Install TMFO database objects in a first Oracle19c tenant (CDB or PDB)

 Install TMFO database objects in subsequent Oracle19c tenants if needed

TMFO installation differs for the first tenant and all subsequent tenants within a single Oracle19c instance. This

white paper outlines steps how to install TMFO in Oracle19c CDB and PDB tenants.

TMFO MODULES INSTALLATION IN DATABASE HOST OPERATING SYSTEM

First, you must install TMFO modules in an operating system where Oracle19c is running:

 Login to Oracle database server host as database software owner user. For Unix/Linux platforms,

this user is called usually oracle.

 Create a new directory owned by Oracle database software owner user. This directory will be used

as installation and working directory of TMFO product. This directory will be referred to as

TMFO_DIR. For example, on Linux create tmfo folder by the command:

 $ mkdir /home/oracle/tmfo

 Extract the TMFO distribution archive to the TMFO_DIR folder.

 Go to TMFO_DIR folder, open tmWorkPck.sql script file in any editor program and configure the

following required parameters:

 tmOwner - name of the Oracle tenant database schema which will be used to store neces-

sary database objects and TMFO PL/SQL API. This parameter should be set to the schema

name (in upper case). In most cases, TMFO schema name is TM. However, for CDB database

you must name the Oracle user as C##TM because user names in CDB container must have

C## prefix if the INIT.ORA parameter COMMON_USER_PREFIX is set to its default value C##.

 For example,

 tmOwner varchar2(100) := 'C##TM';

 tmUserProgram - absolute path to Time Machine tmuser program executable;

 For example, on Unix/Linux platforms:

 tmUserProgram varchar2(1000) := '/etc/ssstm/tmuser';

 tmWorkDir - absolute path to TMFO_DIR folder.

 For example, on Unix/Linux platforms:

 tmWorkDir varchar2(1000) := '/home/oracle/tmfo';

 Proceed to TMFO installation in an Oracle19c CDB tenant database.

INITIAL TMFO INSTALLATION IN FIRST TENANT

After you installed TMFO modules in the operating system, you must install TMFO database objects in each

Oracle19c tenant which you are planning to time travel.

Note that the installation process is divided into 2 parts. First part is initial installing of TMFO in a first Oracle19c

tenant (CDB or PDB). Second part is installing TMFO in additional tenants (refer to the topic “TMFO Installation

in Additional Tenant”)

Note that TMFO installation is identical for CDB or PDB tenant. The only difference might be the name of TMFO

database user in CDB tenant as shown in the example below.

The steps below describe the process of the initial TMFO installation in a CDB tenant:

 Go to the TMFO_DIR folder.

 Run SQL*Plus and connect to Oracle19c CDB tenant database as SYS user.

 Create a new schema C##TM which will be used to store necessary database objects and TMFO

PL/SQL API. The schema name must be set to the name configured in tmOwner parameter in

tmWorkPck.sql script. For example, run SQL statements as SYS user in the CDB tenant database:

 $ sqlplus sys as sysdba

 -- connect to CDB Oracle19c tenant database

 SQL> CREATE USER C##TM IDENTIFIED BY pwd;

 User created.

 SQL> GRANT CONNECT,RESOURCE,UNLIMITED TABLESPACE to tm;

 Grant succeeded.

 Run install.sql script in the CDB tenant:

 SQL> show con_name

 CON_NAME

 CDB$ROOT

 SQL> @install.sql

 When prompted, enter the name of TMFO schema name C##TM configured by the parameter

tmOwner.

 Wait until script execution completes and verify that no errors occurred in the log file install.text

created in the TMFO_DIR.

 If no errors were generated, TMFO framework is installed successfully and ready to use in the CDB

tenant database.

 Optionally, you can grant EXECUTE privilege on TMWORK PL/SQL package to other database users

who will use TMFO product.

For example, login in SQL*Plus to the tenant database under the TMFO user and execute the following SQL

statement to grant EXECUTE privilege to a database user C##USER1:

 $ sqlplus c##tm/pwd

4

 SQL> show con_name

 CON_NAME

 CDB$ROOT

 SQL> grant execute on tmwork to c##user1;

 Grant succeeded.

TMFO INSTALLATION IN ADDITIONAL TENANT

After successful TMFO installation in the first tenant (CDB as in the example above), you can optionally install

TMFO in additional tenants available in your Oracle19c database. Below steps provide installation example for a

PDB tenant:

 Go to the TMFO_DIR folder.

 Run SQL*Plus and connect to a target Oracle19c tenant database as SYS user.

 Create a new schema which will be used to store necessary database objects and TMFO PL/SQL API

in this tenant. The schema name must be identical to the name configured by tmOwner parameter

in tmWorkPck.sql script. Notice that if you previously set this tmOwner parameter to C##TM user

name for the initial TMFO installation in CDB tenant, then you must update this parameter to the

user name that will be used for TMFO in this tenant. For example, run SQL statements as SYS user in

the PDB tenant database:

 $ sqlplus sys as sysdba

 -- connect to the Oracle19c tenant database PDB

 SQL> ALTER SESSION SET CONTAINER = PDB;

 Session altered.

 SQL> CREATE USER TM IDENTIFIED BY pwd;

 User created.

 SQL> GRANT CONNECT,RESOURCE,UNLIMITED TABLESPACE to tm;

 Grant succeeded.

 Run addDB.sql script in the tenant database PDB:

 SQL> show con_name

 CON_NAME

 PDB

 SQL> @addDB.sql

 When prompted, enter the name of TMFO schema name configured by the parameter tmOwner in

the script tmWorkPck.sql. In this example, it must be TM.

 Wait until script execution completes and verify that no errors occurred in the log file addDB.text

created in the TMFO_DIR.

 If no errors were generated, TMFO framework is installed successfully and ready to use in the tenant

database.

TIME TRAVEL ORACLE19C TENANT

TMFO allows to setup different virtual times for different Oracle19c tenants where TMFO is installed. TMFO

supports time travelling of CDB and PDB tenants. This feature enables customers to easily perform independent

time shift QA testing in cloud based databases. Let’s see below how to configure different virtual times for 2

Oracle 19c tenants CDB and PDB using TMFO and TMConsole Enterprise products.

• In TMConsole Enterprise connect to the TMFO repository installed in the tenant database CDB.

• In the “Oracle Database Virtual Clock Rules” configure a new rule “cdb_rule” to enable

 virtual time for the tenant CDB:

 GRAPHIC 2

 In the “User List” you can either check “ALL USERS” to enable virtual clock for all tenant database

users or select particular users which are specific for your application.

 You can optionally configure additional rule filters based on client host names and application

names.

 Check “Enabled?” check box and press OK to activate virtual clock for the tenant CDB.

 Connect to the tenant PDB and configure a rule named pdb_rule for this tenant:

GRAPHIC 3

 You can optionally configure additional rule filters based on client host names and application

names. Save your changes.

 Save your changes.

.

Now, you have configured different virtual times for two tenant databases CDB and PDB. Let’s connect

to both tenants and verify if applications see correct virtual times in every tenant. In TMConsole

Enterprise, it is also possible to verify actual virtual times for all user sessions in each tenant database:

 GRAPHIC 4

7

Oracle Cloud Ready

SolutionSoft Systems, Inc.

2350 Mission College Blvd., Suite #777

Santa Clara, CA 95054, U.S.A.

Phone: 1.408.346.1400

Sales: 1.408.346.1415

Europe

SolutionSoft Systems, Inc.

Trnska 8, Suite 7

Belgrade, Serbia, 11000

Phone: +1381 11 403 1523

www.solution-soft.com

 www.facebook.com/solution-soft

 www.twitter.com/solution-soft

 www.linkedin.com/solution-soft

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties

or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability
With respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form

 or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Copyright © 1993-2020 SolutionSoft Systems, Inc. All rights reserved. Time Machine and Solution-Soft are registered trademarks of SolutionSoft Systems, Inc.
All other trademarks are properties of their respective owners.

WP139_LM20200421

The Time Machine Framework for Oracle was developed

and tested in the Oracle Database Cloud Service and is

listed in the Oracle Cloud Marketplace.

Visit our page in the Oracle Cloud Marketplace

http://cloud.oracle.com/marketplace/listing/4382882

